其中,尤值关注便是我们曾专文报道、得到权威学者Nir Barzilai博士赏识的“抗衰药新科状元郎”SGLT2抑制剂,SGLT-2抑制剂被发现可通过抑制糖类重吸收,实现内源性生酮,对机体起到热量限制作用[29](兜兜转转,还是CR)。
参考文献
[1] Wang, L., Chen, P., & Xiao, W. (2021). β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients, 13(10), 3420. https://doi.org/10.3390/nu13103420
[2] Kolb, H., Kempf, K., Röhling, M., Lenzen-Schulte, M., Schloot, N. C., & Martin, S. (2021). Ketone bodies: from enemy to friend and guardian angel. BMC medicine, 19(1), 313. https://doi.org/10.1186/s12916-021-02185-0
[3] Stubbs, B. J., Koutnik, A. P., Volek, J. S., & Newman, J. C. (2021). From bedside to battlefield: intersection of ketone body mechanisms in geroscience with military resilience. GeroScience, 43(3), 1071–1081. https://doi.org/10.1007/s11357-020-00277-y
[4] Edwards, C., Canfield, J., Copes, N., Rehan, M., Lipps, D., & Bradshaw, P. C. (2014). D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging, 6(8), 621–644. https://doi.org/10.18632/aging.100683
[5] Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., & Cahill, G. F., Jr (1967). Brain metabolism during fasting. The Journal of clinical investigation, 46(10), 1589–1595. https://doi.org/10.1172/JCI105650
[6] Sultan A. M. (1988). D-3-hydroxybutyrate metabolism in the perfused rat heart. Molecular and cellular biochemistry, 79(2), 113–118. https://doi.org/10.1007/BF02424552
[7] Murashige, D., Jang, C., Neinast, M., Edwards, J. J., Cowan, A., Hyman, M. C., Rabinowitz, J. D., Frankel, D. S., & Arany, Z. (2020). Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science (New York, N.Y.), 370(6514), 364–368. https://doi.org/10.1126/science.abc8861
[8] RUDOLPH, W., MAAS, D., RICHTER, J., HASINGER, F., HOFMANN, H., & DOHRN, P. (1965). UBER DIE BEDEUTUNG VON ACETACETAT UND BETA-HYDROXYBUTYRAT IM STOFFWECHSEL DES MENSCHLICHEN HERZENS [ON THE SIGNIFICANCE OF ACETOACETATE AND BETA-HYDROXYBUTYRATE IN HUMAN MYOCARDIAL METABOLISM]. Klinische Wochenschrift, 43, 445–451. https://doi.org/10.1007/BF01483852
[9] Yurista, S. R., Chong, C. R., Badimon, J. J., Kelly, D. P., de Boer, R. A., & Westenbrink, B. D. (2021). Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 77(13), 1660–1669. https://doi.org/10.1016/j.jacc.2020.12.065
[10] Taggart, A. K., Kero, J., Gan, X., Cai, T. Q., Cheng, K., Ippolito, M., Ren, N., Kaplan, R., Wu, K., Wu, T. J., Jin, L., Liaw, C., Chen, R., Richman, J., Connolly, D., Offermanns, S., Wright, S. D., & Waters, M. G. (2005). (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. The Journal of biological chemistry, 280(29), 26649–26652. https://doi.org/10.1074/jbc.C500213200
[11] Offermanns S. (2006). The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends in pharmacological sciences, 27(7), 384–390. https://doi.org/10.1016/j.tips.2006.05.008
[12] Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A., & Tsujimoto, G. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America, 108(19), 8030–8035. https://doi.org/10.1073/pnas.1016088108
[13] Tunaru, S., Kero, J., Schaub, A., Wufka, C., Blaukat, A., Pfeffer, K., & Offermanns, S. (2003). PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature medicine, 9(3), 352–355. https://doi.org/10.1038/nm824
[14] Lukasova, M., Malaval, C., Gille, A., Kero, J., & Offermanns, S. (2011). Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. The Journal of clinical investigation, 121(3), 1163–1173. https://doi.org/10.1172/JCI41651
[15] Kovács, Z., D'Agostino, D. P., Diamond, D., Kindy, M. S., Rogers, C., & Ari, C. (2019). Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Frontiers in psychiatry, 10, 363. https://doi.org/10.3389/fpsyt.2019.00363
[16] Norwitz, N. G., Hu, M. T., & Clarke, K. (2019). The Mechanisms by Which the Ketone Body D-β-Hydroxybutyrate May Improve the Multiple Cellular Pathologies of Parkinson's Disease. Frontiers in nutrition, 6, 63. https://doi.org/10.3389/fnut.2019.00063
[17] Han, Y. M., Ramprasath, T., & Zou, M. H. (2020). β-hydroxybutyrate and its metabolic effects on age-associated pathology. Experimental & Molecular Medicine, 52(4), 548–555. https://doi.org/10.1038/s12276-020-0415-z
[18] Meroni, E., Papini, N., Criscuoli, F., Casiraghi, M. C., Massaccesi, L., Basilico, N., & Erba, D. (2018). Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients, 10(2), 250. https://doi.org/10.3390/nu10020250
[19] Bae, H. R., Kim, D. H., Park, M. H., Lee, B., Kim, M. J., Lee, E. K., Chung, K. W., Kim, S. M., Im, D. S., & Chung, H. Y. (2016). β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 7(41), 66444–66454. https://doi.org/10.18632/oncotarget.12119
[20] Guo, Q., Liu, S., Wang, S., Wu, M., Li, Z., & Wang, Y. (2019). Beta-hydroxybutyric acid attenuates neuronal damage in epileptic mice. Acta histochemica, 121(4), 455–459. https://doi.org/10.1016/j.acthis.2019.03.009
[21] Newman, J. C., & Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in endocrinology and metabolism: TEM, 25(1), 42–52. https://doi.org/10.1016/j.tem.2013.09.002
[22] Zupec-Kania, B. A., & Spellman, E. (2008). An overview of the ketogenic diet for pediatric epilepsy. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, 23(6), 589–596. https://doi.org/10.1177/0884533608326138
[23] Hall, K. D., Guo, J., Courville, A. B., Boring, J., Brychta, R., Chen, K. Y., Darcey, V., Forde, C. G., Gharib, A. M., Gallagher, I., Howard, R., Joseph, P. V., Milley, L., Ouwerkerk, R., Raisinger, K., Rozga, I., Schick, A., Stagliano, M., Torres, S., Walter, M., … Chung, S. T. (2021). Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nature medicine, 27(2), 344–353. https://doi.org/10.1038/s41591-020-01209-1
[24] Rosenbaum, M., Hall, K. D., Guo, J., Ravussin, E., Mayer, L. S., Reitman, M. L., Smith, S. R., Walsh, B. T., & Leibel, R. L. (2019). Glucose and Lipid Homeostasis and Inflammation in Humans Following an Isocaloric Ketogenic Diet. Obesity (Silver Spring, Md.), 27(6), 971–981. https://doi.org/10.1002/oby.22468
[25] Pinckaers, P. J., Churchward-Venne, T. A., Bailey, D., & van Loon, L. J. (2017). Ketone Bodies and Exercise Performance: The Next Magic Bullet or Merely Hype?. Sports medicine (Auckland, N.Z.), 47(3), 383–391. https://doi.org/10.1007/s40279-016-0577-y
[26] Veech, R. L., Bradshaw, P. C., Clarke, K., Curtis, W., Pawlosky, R., & King, M. T. (2017). Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB life, 69(5), 305–314. https://doi.org/10.1002/iub.1627
[27] Lin, A. L., Zhang, W., Gao, X., & Watts, L. (2015). Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiology of aging, 36(7), 2296–2303. https://doi.org/10.1016/j.neurobiolaging.2015.03.012
[28] Mansor, L. S., & Woo, G. H. (2021). Ketones for Post-exercise Recovery: Potential Applications and Mechanisms. Frontiers in physiology, 11, 613648. https://doi.org/10.3389/fphys.2020.613648
[29] Hoong, C., & Chua, M. (2021). SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology, 162(8),bqab079.https://doi.org/10.1210/endocr/bqab079