生酮饮食要翻身?被误会的酮体:激活AMPK、调节表观遗传...三招教你健康“升”酮

source : KTLT'S

release : 2022-10-05

生物体内的酮体主要包括丙酮、乙酰乙酸(AcAc)与β-羟基丁酸(β-HB),是脂肪酸在肝脏内氧化时的特定中间代谢产物,酮体在肝脏内生成后,会被转运去往肝外其他组织利用[1-3],其主要代谢过程如下:


肝脏中的生酮作用:

外周肝细胞摄取脂肪酸后,转运至线粒体,再由β-氧化生成的乙酰辅酶A及其衍生物合成酮体,其中,β-HB和少量AcAc经MCT(单羧酸转运体)被释放至血液中,参与循环,而丙酮不具有新陈代谢活性,常通过尿液排泄或呼吸排出。

肝外组织的酮体利用

肝外器官如大脑、心脏、神经元、肾皮质骨骼肌,均可发生酮体代谢,在这些组织的线粒体内,β-HB、AcAc在SCOT(琥珀酰辅酶A转移酶,为酮体代谢的限速酶)等多种酶催化下,最终重新生成乙酰辅酶A,加入TCA循环,参与能量代谢过程。

如此看来,酮体代谢真“涉足甚广”,不仅关联多个生物体重要组织器官,还与衰老研究中极为关注的细胞器线粒体,以及机体能量代谢的核心环节TCA循环“难舍难分”。

情理之中,酮体也的确被发现可调控机体稳态,尤以β-羟基丁酸(β-HB)研究最多。2014年,一项报道指出,向模式生物线虫给予β-HB,可恢复其因蛋白质或葡萄糖代谢异常造成的稳态丧失,并直接助力线虫延长寿命20%[4]。


因此,以β-HB为代表,酮体被认为具有一定潜在衰老干预价值,并且,随着关联研究的日益深入,其调控机体的神秘内核也正被逐步揭示。


作为能量底物

尽管葡萄糖是生物体最直接的供能物质,但在某些特殊情况下(如饥饿),β-HB可作为大脑、心脏、肌肉等组织的补偿燃料,维持正常能量代谢[5, 6]。

并且,我们体内的一些组织如心脏,相比利用糖类物质,更倾向通过脂肪酸氧化途径供能[7],血液中循环酮水平是心肌酮体氧化率的决定因素[8]。也正因此,2021年,权威医学期刊《美国心脏病学会杂志》刊登研究,肯定了酮体对心血管系统疾病的治疗潜力[9]。


信号传导介质

细胞、组织之间你来我往的正常通讯,是机体赖以维系的基础,而β-HB也被发现作为一种信号传导的介质,参与其中。

作为G蛋白偶联受体(GPCR)的配体,β-HB调控着与脂质代谢、细胞生长相关的多条信号通路[10-12]。例如,β-HB可适度激活广泛存于中性粒细胞、巨噬细胞上的GPR109A(羟基羧酸受体2),起到神经保护、抑制炎症、调节血脂的作用[13-15]。

此外,β-HB还被发现是一种信号分子,能通过调控与炎症息息相关的NF-κB[16]、SKN-1/Nrf2通路[4, 17, 18],参与线粒体代谢,增强机体的氧化防御能力,并能激活AMPK通路保持能量稳态[19, 20]。


调节表观遗传

目前,多项研究已证实β-HB对细胞表观遗传的独特作用[21]。身为HDAC(I类组蛋白脱乙酰酶)的内源性抑制剂,β-HB调节了组蛋白包括甲基化、乙酰化在内的翻译后修饰,可诱导DAF-16/FOXO通路的转录和激活,对细胞自噬、凋亡以及机体炎症状况均有改善作用[1-4]。

图注:β-HB诱导的组蛋白翻译后修饰的主要表观遗传学改变


前文罗列种种,似乎都在指向一个事实——酮体被误会、被冤枉了!

起初,因糖尿病患者酮症酸中毒而为人所知的酮体,原来并非是什么十恶不赦的恶鬼,控制其浓度在安全范围内(比如营养性酮症状态,一般血液酮体含量在0.5-5 mmol/L之间),竟还能带来意想不到的健康增益效果。

此话一出,疑惑接踵而至:既然适当提升血酮浓度是有益的,那为何长期生酮饮食“竹篮打水一场空”,体重管不好也就罢了,还反倒容易患上心血管系统、肾脏疾病,以及非酒精性脂肪肝、阿尔茨海默氏症等一众慢性疾病



对此,在笔者看来,除了生酮饮食的固有弊端,像是大量摄入饱和脂肪酸,缺乏水果、蔬菜、全谷物食品,使得机体所需多种维矿、活性成分(如亚麻酸)无法得到补充[22],慢性炎症加剧[23, 24],还可能存在一种“双腿理论”的推测(自创的…也没想好名字,姑且先这么叫吧…)。

我们的身体仿佛一栋大厦,由众多钢筋骨架共同支撑、打造而成,聚焦到某一具体过程,又会有更小的结构来辅助实现,在能量代谢调控里,酮体糖类便是两大主要干将。它们就好似支撑个体的双腿,同心发力、互为补充,共同实现机体能源供应,若是把一方势力完全剥夺,偏安一隅,那结果只能像单腿行走的人,歪歪倒倒,行不稳,致不远,机体很容易面临能量供应危机

并且,当仅依靠单一源头供能,长此以往,先不说单打独斗的那位能不能顶得住,被“打入冷宫”的就先要鸣不平,长期生酮饮食下,机体利用糖类物质的能力受到损害[25],会逐渐变成“长短腿”模样。这人嘛,还是要踏实点,用两条腿好好走。

既然如此,有没有什么好法子,能让我们健康“升”酮?毕竟延年益寿的好东西,谁不想要!综合当下科学证据,笔者为大家整理了以下若干方法:


热量限制(CR)

热量限制在抗衰界可谓老生常谈,但对于这一饮食策略,最难其实是践行,往往是大脑说:“学会了学会了”,嘴巴则哭喊着:“臣妾做不到”。

在热量限制试验中,学者们发现,践行CR的受试生物血液酮体含量上升,机体营养代谢[26]与器官衰老(如改善老化大脑代谢与血管状态)[27]得到改善,并指出,酮体极可能是CR延寿背后的机制之一

运动

尽管补充酮体能否提高运动表现还存在较大争议[25, 28],但多数证据表明,在运动过程中,人体发生了活跃的循环酮体代谢,如高强度无氧运动时β-HB可作为备用能源,而长时间有氧运动后,可能会出现运动后酮症(0.3-2.0 mmol/L)。

其中,尤值关注便是我们曾专文报道、得到权威学者Nir Barzilai博士赏识的“抗衰药新科状元郎”SGLT2抑制剂,SGLT-2抑制剂被发现可通过抑制糖类重吸收,实现内源性生酮,对机体起到热量限制作用[29](兜兜转转,还是CR)。


参考文献

[1] Wang, L., Chen, P., & Xiao, W. (2021). β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients, 13(10), 3420. https://doi.org/10.3390/nu13103420

[2] Kolb, H., Kempf, K., Röhling, M., Lenzen-Schulte, M., Schloot, N. C., & Martin, S. (2021). Ketone bodies: from enemy to friend and guardian angel. BMC medicine, 19(1), 313. https://doi.org/10.1186/s12916-021-02185-0

[3] Stubbs, B. J., Koutnik, A. P., Volek, J. S., & Newman, J. C. (2021). From bedside to battlefield: intersection of ketone body mechanisms in geroscience with military resilience. GeroScience, 43(3), 1071–1081. https://doi.org/10.1007/s11357-020-00277-y

[4] Edwards, C., Canfield, J., Copes, N., Rehan, M., Lipps, D., & Bradshaw, P. C. (2014). D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging, 6(8), 621–644. https://doi.org/10.18632/aging.100683

[5] Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., & Cahill, G. F., Jr (1967). Brain metabolism during fasting. The Journal of clinical investigation, 46(10), 1589–1595. https://doi.org/10.1172/JCI105650

[6] Sultan A. M. (1988). D-3-hydroxybutyrate metabolism in the perfused rat heart. Molecular and cellular biochemistry, 79(2), 113–118. https://doi.org/10.1007/BF02424552

[7] Murashige, D., Jang, C., Neinast, M., Edwards, J. J., Cowan, A., Hyman, M. C., Rabinowitz, J. D., Frankel, D. S., & Arany, Z. (2020). Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science (New York, N.Y.), 370(6514), 364–368. https://doi.org/10.1126/science.abc8861

[8] RUDOLPH, W., MAAS, D., RICHTER, J., HASINGER, F., HOFMANN, H., & DOHRN, P. (1965). UBER DIE BEDEUTUNG VON ACETACETAT UND BETA-HYDROXYBUTYRAT IM STOFFWECHSEL DES MENSCHLICHEN HERZENS [ON THE SIGNIFICANCE OF ACETOACETATE AND BETA-HYDROXYBUTYRATE IN HUMAN MYOCARDIAL METABOLISM]. Klinische Wochenschrift, 43, 445–451. https://doi.org/10.1007/BF01483852

[9] Yurista, S. R., Chong, C. R., Badimon, J. J., Kelly, D. P., de Boer, R. A., & Westenbrink, B. D. (2021). Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 77(13), 1660–1669. https://doi.org/10.1016/j.jacc.2020.12.065

[10] Taggart, A. K., Kero, J., Gan, X., Cai, T. Q., Cheng, K., Ippolito, M., Ren, N., Kaplan, R., Wu, K., Wu, T. J., Jin, L., Liaw, C., Chen, R., Richman, J., Connolly, D., Offermanns, S., Wright, S. D., & Waters, M. G. (2005). (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. The Journal of biological chemistry, 280(29), 26649–26652. https://doi.org/10.1074/jbc.C500213200

[11] Offermanns S. (2006). The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends in pharmacological sciences, 27(7), 384–390. https://doi.org/10.1016/j.tips.2006.05.008

[12] Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A., & Tsujimoto, G. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America, 108(19), 8030–8035. https://doi.org/10.1073/pnas.1016088108

[13] Tunaru, S., Kero, J., Schaub, A., Wufka, C., Blaukat, A., Pfeffer, K., & Offermanns, S. (2003). PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature medicine, 9(3), 352–355. https://doi.org/10.1038/nm824

[14] Lukasova, M., Malaval, C., Gille, A., Kero, J., & Offermanns, S. (2011). Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. The Journal of clinical investigation, 121(3), 1163–1173. https://doi.org/10.1172/JCI41651

[15] Kovács, Z., D'Agostino, D. P., Diamond, D., Kindy, M. S., Rogers, C., & Ari, C. (2019). Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Frontiers in psychiatry, 10, 363. https://doi.org/10.3389/fpsyt.2019.00363

[16] Norwitz, N. G., Hu, M. T., & Clarke, K. (2019). The Mechanisms by Which the Ketone Body D-β-Hydroxybutyrate May Improve the Multiple Cellular Pathologies of Parkinson's Disease. Frontiers in nutrition, 6, 63. https://doi.org/10.3389/fnut.2019.00063

[17] Han, Y. M., Ramprasath, T., & Zou, M. H. (2020). β-hydroxybutyrate and its metabolic effects on age-associated pathology. Experimental & Molecular Medicine, 52(4), 548–555. https://doi.org/10.1038/s12276-020-0415-z

[18] Meroni, E., Papini, N., Criscuoli, F., Casiraghi, M. C., Massaccesi, L., Basilico, N., & Erba, D. (2018). Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients, 10(2), 250. https://doi.org/10.3390/nu10020250

[19] Bae, H. R., Kim, D. H., Park, M. H., Lee, B., Kim, M. J., Lee, E. K., Chung, K. W., Kim, S. M., Im, D. S., & Chung, H. Y. (2016). β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 7(41), 66444–66454. https://doi.org/10.18632/oncotarget.12119

[20] Guo, Q., Liu, S., Wang, S., Wu, M., Li, Z., & Wang, Y. (2019). Beta-hydroxybutyric acid attenuates neuronal damage in epileptic mice. Acta histochemica, 121(4), 455–459. https://doi.org/10.1016/j.acthis.2019.03.009

[21] Newman, J. C., & Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in endocrinology and metabolism: TEM, 25(1), 42–52. https://doi.org/10.1016/j.tem.2013.09.002

[22] Zupec-Kania, B. A., & Spellman, E. (2008). An overview of the ketogenic diet for pediatric epilepsy. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, 23(6), 589–596. https://doi.org/10.1177/0884533608326138

[23] Hall, K. D., Guo, J., Courville, A. B., Boring, J., Brychta, R., Chen, K. Y., Darcey, V., Forde, C. G., Gharib, A. M., Gallagher, I., Howard, R., Joseph, P. V., Milley, L., Ouwerkerk, R., Raisinger, K., Rozga, I., Schick, A., Stagliano, M., Torres, S., Walter, M., … Chung, S. T. (2021). Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nature medicine, 27(2), 344–353. https://doi.org/10.1038/s41591-020-01209-1

[24] Rosenbaum, M., Hall, K. D., Guo, J., Ravussin, E., Mayer, L. S., Reitman, M. L., Smith, S. R., Walsh, B. T., & Leibel, R. L. (2019). Glucose and Lipid Homeostasis and Inflammation in Humans Following an Isocaloric Ketogenic Diet. Obesity (Silver Spring, Md.), 27(6), 971–981. https://doi.org/10.1002/oby.22468

[25] Pinckaers, P. J., Churchward-Venne, T. A., Bailey, D., & van Loon, L. J. (2017). Ketone Bodies and Exercise Performance: The Next Magic Bullet or Merely Hype?. Sports medicine (Auckland, N.Z.), 47(3), 383–391. https://doi.org/10.1007/s40279-016-0577-y

[26] Veech, R. L., Bradshaw, P. C., Clarke, K., Curtis, W., Pawlosky, R., & King, M. T. (2017). Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB life, 69(5), 305–314. https://doi.org/10.1002/iub.1627

[27] Lin, A. L., Zhang, W., Gao, X., & Watts, L. (2015). Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiology of aging, 36(7), 2296–2303. https://doi.org/10.1016/j.neurobiolaging.2015.03.012

[28] Mansor, L. S., & Woo, G. H. (2021). Ketones for Post-exercise Recovery: Potential Applications and Mechanisms. Frontiers in physiology, 11, 613648. https://doi.org/10.3389/fphys.2020.613648

[29] Hoong, C., & Chua, M. (2021). SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology, 162(8),bqab079.https://doi.org/10.1210/endocr/bqab079